恭喜实验室张佳博士论文‘Computational drug repositioning using collaborative filtering via
multi-source fusion'被Expert Systems with Applications录用。
Drug repositioning contributes to a remarkable reduction in time and cost in
traditional de novo drug discovery. In this study, we propose a multi-source-
based drug repositioning method by using collaborative filtering to discover
new indications of drugs. First, we integrate multiple data sources which are
drug chemical structures, drug target proteins, and drug-disease associations to
extract similarity matrices of drugs and diseases, respectively. Based on different
similarity matrices, collaborative filtering is utilized to predict the drug-disease
incidence matrix. Then an optimization objective function is designed to adjust
the weight of each data source, and informative sources are noticed with the
larger weights. Finally, experimental results on benchmark data sets reveal
that the proposed algorithm is helpful to improve the prediction performance, by
taking Alzheimer’s disease and stroke as two examples, it is confirmed that the
proposed algorithm can produce credible repositioning drugs in the treatment
for these two diseases.